ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СПЛАВЫ МЕЛНО-ШИНКОВЫЕ

Методы определения алюминия

ΓΟCT 1652.10—77

Copper-zinc alloys.

Methods for the determination of aluminium

ОКСТУ 1709

Дата введения 1978-07-01

Настоящий стандарт устанавливает титриметрические методы определения алюминия (при массовой доле алюминия от 0,5 до 8 %), фотометрический метод определения алюминия (при массовой доле алюминия от 0,005 до 0,5 %) и атомно-абсорбционный метод определения алюминия (при массовой доле алюминия от 0,01 до 8 %) в медно-цинковых сплавах по ГОСТ 15527, ГОСТ 17711 и ГОСТ 1020.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 25086 с дополнением по п. 1.1 ГОСТ 1652.1.

(Измененная редакция, Изм. № 2).

2. ТИТРИМЕТРИЧЕСКИЙ КОМПЛЕКСОНОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ (ОТ 0,5 ДО 8 %).

2.1. Сущность метода

Метод основан на введении в раствор пробы избытка раствора трилона Б, образующего комплекс со всеми компонентами сплава, титровании избытка раствором азотнокислой меди, разложении комплексоната алюминия, добавлением фторида аммония или натрия и титровании трилона Б, выделившегося в количестве, эквивалентном содержанию алюминия.

2.2. Аппаратура, реактивы и растворы pH-метр со всеми принадлежностями (типа ЛПУ-01 или pH-340 и т.п.).

Потенциометр типа ЛПМ-60 с ценой деления шкалы 5 мВ.

Микроамперметр типа М-95 со щкалой на 25 мкА.

Аккумулятор напряжением 2 В или сухая батарея такого же напряжения.

Переменное сопротивление 1 мОм.

Два платиновых электрода, изготовленные из проволоки диаметром 0.8-1 мм, впаянной в стеклянную трубку. Длина рабочей части электродов 30-35 мм.

Магнитная мешалка.

Бюретка вместимостью 25 см³ с тонкооттянутым носиком.

Микробюретка вместимостью 1 см³ с оттянутым носиком.

Смесь для растворения; готовят смешиванием трех объемов концентрированной соляной кислоты с одним объемом концентрированной азотной кислоты.

Кислота серная по ГОСТ 4204.

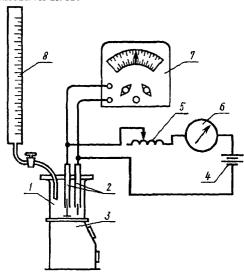
Уротропин (гексаметилентетрамин).

Перекись водорода по ГОСТ 10929, 30 %-ный раствор.

Смесь для обновления поверхности электродов; готовят добавлением в соляную кислоту, разбавленную 1:5, нескольких капель перекиси водорода.

Раствор сернокислого марганца по ГОСТ 435, содержащий $1~\rm Mг/cm^3$ марганца; готовят следующим образом: 2,75 г соли растворяют в $1~\rm дм^3$ воды.

Установка для титрометрического определения алюминия с амперметрической индикацией конца титрования (см. чертеж).


Установка состоит из следующих элементов: стакана 1 вместимостью $250-300~{\rm cm}^3$ для анализируемого раствора; двух платиновых индикаторных электродов 2 длиной $17-20~{\rm mm}$ и диаметром $0.8-1~{\rm mm}$; магнитной мешалки 3; аккумулятора или сухой батареи 4; переменного сопротивления $1~{\rm MOm}~5~{\rm для}$ установления поляризующего тока $2-10~{\rm mkA}$; микроамперметра 6; потенциометра $7~{\rm для}$ измерения напряжения на электродах; бюретки 8.

Цена деления шкалы потенциометра должна быть не менее 5 мВ, что при скачке потенциала в точке эквивалентности обеспечивает отклонение стрелки по шкале прибора не менее чем на 20—25 делений.

Такой скачок фиксируется с высокой точностью. Титрант (раствор сульфата меди) поступает в стакан из бюретки вместимостью 25 см³; в непосредственной близости к точке эквивалентности титрант подают по каплям из микробюретки.

Значения рН титруемого раствора устанавливают по рН-метру. Установление рН по кислотно-основному индикатору или индикаторной бумаге не обеспечивает необходимой точности титрования, особенно в случае титрования окрашенных растворов.

Для титриметрического определения алюминия можно воспользоваться установкой ПАТ.

Определение массовой концентрации стандартного раствора меди

Навеску меди массой 0,2 г помещают в стакан вместимостью 250 см 3 , добавляют 10 см 3 стандартного раствора алюминия и растворяют медь в 3 см 3 азотной кислоты, разбавленной 1:1. После растворения навески раствор выпаривают до объема около 1 см 3 , добавляют 40 см 3 воды, 1 см 3 раствора марганца и 20 см 3 раствора трилона $\mathbf{5}$.

Устанавливают рН раствора 6,0—6,2 (по хлор-серебряному электроду на рН-метре), добавляя уротропин небольшими порциями. Раствор кипятят 5 мин, охлаждают, устанавливают стакан на магнит-

ную мешалку, погружают в раствор платиновые электроды, с помошью переменного сопротивления устанавливают в цепи ток в прелелах 2—10 мкА, включают потенциомето и устанавливают стрелку на шкале потенциометра таким образом, чтобы она находилась посредине шкалы. Оттитровывают избыток трилона Б стандартным раствором меди, непрерывно перемешивая раствор. Титрант поступает в стакан приблизительно со скоростью 10 см³/мин. К концу титрования стандартный раствор меди добавляют по каплям. Титрование считают законченным, когда от добавления одной капли титранта (раствора меди) стрелка потенциометра отклоняется влево не менее чем на 20 делений шкалы (100 мВ).

После первого титрования в раствор добавляют 20 см³ раствора фторида натрия, устанавливают рН 6,0-6,2 добавлением нескольких капель азотной кислоты, разбавленной 1:1, или уротропина и кипятят раствор 2 мин.

После охлаждения раствор титруют стандартным раствором меди также как и в случае связывания избытка трилона Б. Последние поршии титранта в преледах 1 см3 добавляют из микробюретки и определяют конечную точку титрования амперометрически, как описано выше.

Для установления массовой концентрации стандартного раствора меди указанное выше определение повторяют не менее пяти раз.

Массовую концентрацию стандартного раствора (Т), выраженную в г/см3 алюминия, вычисляют по формуле

$$T = \frac{0.01}{V}$$
,

где V — объем стандартного раствора меди, израсходованный на второе титрование, cm^3 .

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1 и 1:5.

Аммиак по ГОСТ 3760, разбавленный 1:1.

Кислота уксусная по ГОСТ 61.

Аммоний уксуснокислый по ГОСТ 3117, раствор 200 г/дм³.

1-(2-пиридилазо)-2-нафтол (ПАН), спиртовой раствор 1 г/дм3.

Спирт этиловый ректификованный технический по ГОСТ 18300. Мочевина по ГОСТ 6691, раствор 100 г/дм^3 .

Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты 2-водная (трилон Б) по ГОСТ 10652, раствор 100 г/дм3.

Аммоний фтористый по ГОСТ 4518.

Натрий фтористый по ГОСТ 4463 и раствор 25 г/дм³.

Медь по ГОСТ 859 марки М0к и М00к.

Раствор меди стандартный, 0,005М раствор; готовят следующим образом: 3,177 г металлической меди растворяют в 20 см³ азотной кислоты, разбавленной 1:1. После растворения кипятят раствор до удаления окислов азота, охлаждают, нейтрализуют аммиаком до появления неисчезающего осадка, который растворяют добавлением уксусной кислоты и разбавляют до 1 дм³.

Алюминий марки А999 по ГОСТ 11069.

Раствор алюминия стандартный; готовят следующим образом:

1 г алюминия растворяют в $10\ {\rm cm^3}$ соляной кислоты, переносят в мерную колбу вместимостью $1\ {\rm дm^3}$ и доливают до метки водой.

1 см³ раствора содержит 0,001 г алюминия.

Определение массовой концентрации раствора меди

Отбирают 20 см³ стандартного раствора алюминия в коническую колбу вместимостью 500 см³, разбавляют водой до 50—60 см³, нейтрализуют аммиаком до образования неисчезающего осадка, который растворяют добавлением соляной кислоты и сверх этого дают еще две капли в избыток. Добавляют 20 см³ раствора трилона Б, 100—150 см³ горячей воды и нагревают до кипения. В горячий раствор приливают 10 см³ раствора уксуснокислого аммония, 0,5 см³ раствора ПАН и титруют горячий раствор стандартным раствором меди до перехода зеленой окраски раствора в синюю, затем добавляют 1 г фторида натрия (или аммония), кипятят 5 мин и снова титруют раствором меди до перехода зеленой окраски раствора в синюю.

Массовую концентрацию раствора меди (T_1), выраженную в г/см³ алюминия, вычисляют по формуле

$$T_1 = \frac{m}{V}$$

где m — масса алюминия, соответствующая аликвотной части, отобранной для титрования, г;

V — объем стандартного раствора меди, израсходованный на второе титрование, см³.

2.3. Проведение анализа

2.3.1. \hat{C} амперометрической индикацией конечной точки титрования Навеску сплава массой 0.5 г (при массовой доле алюминия до 5 %)

и 0.2 г (при массовой доле алюминия свыше 5 %) растворяют в 3 см³ смеси кислот для растворения. После растворения добавляют 1.5 см³ серной кислоты и выпаривают раствор до начала выделения густого белого дыма серной кислоты. Объем раствора после выпаривания должен составлять не более 1 см^3 . Стакан охлаждают, добавляют 40 см^3 воды, 20 см^3 раствора трилона Б и далее анализ ведут, как указано в п. 2.2.

2.3.2. С визуальной индикацией конечной точки титрования

Навеску сплава массой 0,5 г (при массовой доле алюминия до 5 %) и 0,25 г (при массовой доле алюминия свыше 5 %) растворяют при нагревании в 20 см³ азотной кислоты в конической колбе вместимостью 500 см³, добавляют 50—60 см³ воды и кипятят для удаления окислов азота, затем охлаждают, добавляют 10 см³ раствора мочевины и нейтрализуют раствор аммиаком до образования неисчезающего осадка, который затем растворяют добавлением соляной кислоты и сверх этого дают в избыток две капли. Далее анализ ведут, как указано в п. 2.2.

- 2.4. Обработка результатов
- 2.4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot T \cdot 100}{m},$$

- где V объем раствора меди, израсходованный на второе титрование, см 3 ;
 - T массовая концентрация раствора меди, выраженная в r/cm^3 алюминия;
 - т масса навески сплава, г.
- 2.4.2. Абсолютные расхождения результатов параллельных определений (d сходимость) не должны превышать допускаемых значений, указанных в табл. 1.

(Измененная редакция, Изм. № 1, 2).

2.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D — воспроизводимость) не должны превышать значений, указанных в табл. 1.

(Измененная редакция, Изм. № 2, 3).

2.4.4. Контроль точности анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным об-

разцам (ОСО), или по стандартным образцам предприятия (СОП) медно-цинковых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сравнением результатов, полученных другим методом, в соответствии с ГОСТ 25086.

(Измененная редакция, Изм. № 3).

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ

3.1. Сущность метода

Метод основан на образовании окрашенного комплексного соединения с эриохромцианином Р (или хромазуролом С) после предварительного отделения элементов от алюминия электролизом на ртутном катоде или с платиновыми электродами и последующим отделении алюминия соосаждением с гидроокисью железа.

3.2. Аппаратура, реактивы и растворы

Установка для электролиза с платиновыми электролами по ГОСТ 6563.

Установка для электролиза с ртутным катодом.

Спектрофотометр или фотоэлектроколориметр рН-метр.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118, разбавленная 1:1 и 0,1 моль/дм3.

Кислота хлорная, разбавленная 1:1, 1:4 и 1:99.

Кислота серная по ГОСТ 4204, разбавленная 1:1.

Кислота фтористоводородная по ГОСТ 10484.

Смесь кислот для растворения: смешивают соляную (1:1) и азотную (1:1) кислоты в соотношении 1:1.

Аммоний надсернокислый по ГОСТ 20478, раствор 100 г/дм³.

Железо хлорное по ГОСТ 4147, раствор 15 г/дм3: 1,5 г хлорного железа растворяют при нагревании в 30 см³ соляной кислоты (1:1).

Раствор охлаждают, разбавляют до объема 100 см³ и перемещивают. Гидразин сернокислый по ГОСТ 5841.

Спирт этиловый ректификованный по ГОСТ 18300.

Фенолфталеин, раствор 10 г/см³ в этиловом спирте.

Аммиак водный по ГОСТ 3760 и раствор 1:19.

Кислота аскорбиновая, раствор 10 г/см3, свежеприготовленный.

Натрий серноватистокислый по ГОСТ 27068, раствор 50 г/см³.

Мочевина по ГОСТ 6691.

Эриохромцианин Р, раствор 0,7 г/дм3: 0,7 г эриохромцианина растворяют в 2 см³ концентрированной азотной кислоты при постоянном перемещивании в течение 2 мин, добавляют 60 см³ воды, 0,3 г мочевины и выдерживают 24 ч в темном месте. Раствор фильтруют в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают. Раствор хранят в темной склянке.

Хромазурол C, раствор 1 г/дм³: 0,1 г реагента растворяют в 30 см³ теплой воды (не более 60 °C) и 20 см³ этилового спирта, отфильтровывают и доливают до 100 см³ водой.

Желатин, раствор 10 г/см3.

Натрия гидроокись по ГОСТ 4328, раствор 40 г/дм³. Кислота уксусная по ГОСТ 61.

Аммоний уксуснокислый по ГОСТ 3117.

Натрий уксуснокислый по ГОСТ 199 и раствор 2 моль/дм³.

Буферный раствор с pH 6±0,1: 46 г уксуснокислого аммония и 18 г уксуснокислого натрия растворяют в 1 дм³ воды. Устанавливают рН раствора на рН-метре, добавляя раствор гидроокиси натрия или уксусную кислоту.

Алюминий марки А 999 по ГОСТ 11069.

Стандартные растворы алюминия

Раствор А: 0,1 г алюминия растворяют при нагревании в 25 см3 соляной кислоты (1:1). Раствор переносят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают. 1 см³ раствора А содержит 0,0001 г алюминия.

Раствор Б: 5 см³ раствора А переносят в мерную колбу вместимостью 100 см³, добавляют 20 см³ соляной кислоты (1:1), доливают до метки водой и перемешивают.

- 2 см³ раствора Б содержит 0,000005 г алюминия.
- 3.3. Проведение анализа
- 3.3.1. Метод с отделением алюминия от мещающих элементов электролизом на ртутном катоде.

Массу навески сплава (см. табл. 2) помещают в стакан вместимостью 250 см³ и растворяют в 10 см³ смеси кислот для растворения при нагревании.

Таблица 2

Массовая доля алюминия, %	Масса навески, г	Аликвотная часть раствора, см ³
От 0,005 до 0,01 включ. Св. 0,01 » 0,05 » » 0,05 » 0,1 » » 0,1 » 0,5 »	1,0 0,5 0,5 0,5 0,25	25 25 10 5

После растворения навески добавляют 6 или 3 см 3 хлорной кислоты (1:1) соответственно для навески массой 0,5 и 0,25 г и раствор выпаривают до обильного выделения белых паров хлорной кислоты. После охлаждения ополаскивают стенки стакана 5—10 см³ волы и снова нагревают до выделения белых паров. Остаток охлаждают, добавляют 5 см³ хлорной кислоты (1:4), 50 см³ горячей воды и нагревают до растворения солей. Раствор охлаждают, доливают водой до 100 см³ и переносят в электролизер с ртутным катодом. Электролиз проводят при силе тока 4—5 А (плотность тока 0,15 А/см², напряжение 5—6 В). После обесцвечивания раствора продолжают электролиз еще 15 мин, затем раствор переносят в стакан вместимостью 250 см³, ртуть промывают водой и промывные растворы объединяют с основным электролитом. В электролит добавляют 5 см³ раствора надсернокислого аммония и нагревают до температуры раствора надсернокислого аммония и нагревают до температуры 70—80 °C. В случае выпадения двуокиси марганца осадок фильтруют на фильтр средней плотности и промывают четыре раза раствором хлорной кислоты (1:99). Осадок отбрасывают, фильтрат выпаривают до 80—100 см³ и после охлаждения раствор переносят в мерную колбу вместимостью 250 см³, доливают до метки водой и перемешивают.

3.3.1.1. Фотометрирование с применением эриохромцианина Р

В зависимости от массовой доли алюминия в стакан вместимостью 100 см³ отбирают аликвотную часть раствора (см. табл. 2), доливают водой до объема 25 см³, добавляют 2 см³ раствора аскорбиновой кислоты, 1 см³ раствора серноватистокислого натрия, 10 см³ раствора эриохромцианина и раствором гидроокиси натрия устанавливают значение pH 6±0,1 на pH-метре.

значение рН 6±0,1 на рН-метре.

Затем добавляют 30 см³ буферного раствора и раствор переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают. Через 20 мин измеряют оптическую плотность раствора на спектрофотометре при длине волны 535 нм в кювете с толщиной слоя 1 см или на фотоэлектроколориметре с зеленым светофильтром в кювете 2 см³. Раствором сравнения служит раствор контрольного опыта.

3.3.1.2. Фотометрирование с применением хромазурола С В зависимости от массовой доли алюминия в мерную колбу вместимостью $100~{\rm cm}^3$ отбирают аликвотную часть раствора (см. табл. 2), доливают водой до объема $25~{\rm cm}^3$, добавляют $2~{\rm cm}^3$ аскорбиновой кислоты, 5 см³ раствора серноватистокислого натрия и нейтрализуют раствором гидроокиси натрия до

универсальной индикаторной бумаге. Затем добавляют 5 см³ соляной кислоты (0,1 моль/дм³), воды до 50 см³, 10 см³ раствора желатина, 2 см³ раствора хромазурола С, 5 см³ раствора уксуснокислого натрия и доливают до метки водой. Через 10 мин измеряют оптическую плотность раствора на спектрофотометре при 545 нм или на фотоэлектроколориметре с зеленым светофильтром в кювете с толщиной слоя 1 см³. Раствором сравнения служит раствор контрольного опыта.

- 3.3.2. Метод с отделением меди от алюминия электролизом с пластиновыми электродами.
- 3.3.2.1. Для сплавов с массовой долей кремния и олова свыше $0,05\,\%$ и свинца до $0,05\,\%.$

Массу навески сплава (см. табл. 2) помещают в платиновую чашку, добавляют 10 см³ азотной кислоты (1:1), 3—5 см³ фтористоводородной кислоты и растворяют при нагревании. После растворения раствор выпаривают до влажных солей, добавляют 5 см³ серной кислоты и выпаривают до начала выделения белого дыма серной кислоты. После охлаждения растворяют соли в 50 см³ горячей воды и раствор переносят в стакан вместимостью 300 см³. В случае необходимости раствор фильтруют через плотный фильтр с добавлением фильтробумажной массы в стакан вместимостью 250 см³. Осадок и фильтр промывают горячей водой. Раствор в стакане разбавляют водой до 150 см³, добавляют 8 см³ прокипяченной азотной кислоты (1:1) и выделяют медь электролизом по ГОСТ 1652.1.

В электролит добавляют 5 см³ раствора хлорного железа (при массовой доле железа в сплаве менее 0,5 %), 2 капли раствора фенолфталеина, нагревают до температуры 60—70 °С и приливают аммиак до розового окрашивания раствора и еще 2 см³ в избыток. Раствор с осадком оставляют в теплом месте на 20—30 мин и затем фильтруют через фильтр средней плотности. Стакан и осадок на фильтре промывают горячим раствором аммиака (1:19). Осадок смывают с фильтра струей горячей воды в стакан, в котором проводилось осаждение, и остаток на фильтре растворяют в 5—10 см³ горячего раствора соляной кислоты (1:1). Затем фильтр промывают горячей

водой, раствор охлаждают, переносят в мерную колбу вместимостью 250 см³, доливают до метки водой и перемешивают.

В стакан или колбу вместимостью 100 см^3 отбирают аликвотную часть раствора согласно табл. 2, доливают водой до объема 25 см^3 и далее поступают, как указано в пп. 3.3.1.1 и 3.3.1.2.

3.3.2.2. Для сплавов с массовой долей кремния и олова до 0,05 % и свинца свыше 0,5 %.

Массу навески сплава (см. табл. 2) помещают в стакан вместимостью 300 см^3 , добавляют 15 см^3 азотной кислоты (1:1) и растворяют при нагревании. После растворения навески и удаления окислов азота кипячением раствор охлаждают, разбавляют водой до 150 см^3 , выделяют медь электролизом по ГОСТ 1652.1 и далее поступают, как указано в п. 3.3.2.1.

3.3.3. Построение градуировочного графика

В пять из шести стаканов или мерных колб вместимостью по 100 см^3 помещают 1.0; 2.0; 3.0; 4.0 и 5.0 см^3 стандартного раствора Б алюминия. Во все стаканы или колбы наливают воду до объема 25 см^3 , добавляют по 2 см^3 аскорбиновой кислоты и далее поступают, как указано в пп. 3.3.1.1 и 3.3.1.2.

Раствором сравнения служит раствор, не содержащий алюминия. По полученным значениям оптических плотностей растворов и соответствующим им содержаниям строят градуировочный график.

- 3.4. Обработка результатов
- 3.4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X=\frac{m_1\cdot 100}{m},$$

- где m_1 масса алюминия, найденная по градуировочному графику, г;
 - м масса навески, соответствующая аликвотной части раствора, г.
- 3.1-3.3, $3.\overline{3.1}$, 3.3.1.1, 3.3.1.2, 3.3.2, 3.3.2.1, 3.3.2.2, 3.3.3, 3.4, 3.4.1-3.4.3. (Измененная редакция, Изм. № 2).
- 3.4.2. Абсолютные допускаемые расхождения результатов параллельных определений (d сходимость) не должны превышать значений, приведенных в табл. 3.

Таблица 3

Массовая доля алюминия, %	d, %	D, %
От 0,005 до 0,010 включ. Св. 0,010 » 0,025 » » 0,025 » 0,050 » » 0,050 » 0,10 » » 0,10 » 0,25 »	0,002 0,004 0,006 0,010	0,003 0,006 0,008 0,014 0,021
* 0,25	0,025 0,025 0,035 0,05 0,1	0,035 0,035 0,05 0,07 0,14

- 3.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D воспроизводимость) не должны превышать значений, приведенных в табл. 3.
 - 3.4.2, 3.4.3. (Измененная редакция, Изм. № 2, 3).
- 3.4.4. Контроль точности анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) медно-цинковых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сравнением результатов, полученных другим методом, в соответствии с ГОСТ 25086.

(Измененная редакция, Изм. № 3).

4. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ

4.1. Сущность метода

Метод основан на растворении пробы в азотной кислоте или в смеси азотной и соляной кислот и измерении атомной абсорбции алюминия в пламени ацетилен—закись азота при длине волны 309,3 нм. При массовой доле алюминия до 0,1 % атомную абсорбцию алюминия измеряют после предварительного соосаждения его с гидрооксидом железа.

4.2. Аппаратура, реактивы и растворы Атомно-абсорбционный спектрометр.

Лампа с полым катодом или другой источник резонансного излучения для алюминия.

С. 13 ГОСТ 1652,10-77

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1.

Смесь кислот азотной и соляной в соотношении 1:3.

Кислота серная по ГОСТ 4204 и разбавленная 1:1.

Кислота фтористоводородная по ГОСТ 10484.

Апетилен по ГОСТ 5475.

Алюминий по ГОСТ 11069.

Стандартный раствор алюминия: 1 г алюминия растворяют при нагревании в 10 см^3 соляной кислоты (1:1) и 2 см^3 азотной кислоты (1:1). Раствор охлаждают, переносят в мерную колбу вместимостью 1000 см^3 и доливают водой до метки.

1 см³ раствора содержит 0,001 г алюминия.

Медь по ГОСТ 859.

Стандартный раствор меди: 10 г меди растворяют при нагревании в 80 см 3 азотной кислоты (1:1). Раствор охлаждают, переносят в мерную колбу вместимостью 100 см 3 и доливают водой до метки.

1 см³ раствора содержит 0,1 г меди.

Водорода перекись по ГОСТ 10928.

Аммоний хлористый по ГОСТ 3773.

Железо хлорное по ГОСТ 4147, раствор 15 г/дм³: 1,5 г хлорного железа растворяют в 30 см³ соляной кислоты (1:1), раствор охлаждают и разбавляют водой до объема 100 см³.

Аммиак водный по ГОСТ 3760 и разбавленный 1:19.

Калий хлористый по ГОСТ 4237, раствор 200 г/дм³.

- 4.1, 4.2. (Измененная редакция, Изм. № 2).
- 4.3. Проведение анализа
- 4.3.1. При массовых долях алюминия от 0,01 до 0,1 % берут навеску анализируемого сплава массой 3 г. При массовых долях алюминия от 0,1 до 0,5 % берут навеску анализируемого сплава массой 1 г.

(Измененная редакция, Изм. № 2).

4.3.1а. Анализ сплавов, содержащих алюминия до 0,1 %.

Навеску сплава (см. п. 4.3.1) помещают в стакан вместимостью 600 см³ и растворяют в 30 см³ смеси кислот. После растворения раствор разбавляют водой до объема 200 см³, добавляют 3—4 г хлористого аммония и 5 см³ раствора хлорного железа, если в сплаве содержится менее 0,5 % железа. Раствор нагревают до 70—80 °С, добавляют аммиак до полного перехода меди в растворимый аммиачный комплекс и раствор выдерживают в теплом месте в течение 20 мин. Затем раствор фильтруют через фильтр средней плотности и

промывают теплым раствором аммиака (1:19). Осадок на фильтре растворяют 10 см³ соляной кислоты (1:1) с добавлением 2—4 капель перекиси водорода в мерную колбу вместимостью 100 см³, фильтр промывают горячей водой. Раствор охлаждают, добавляют 2 см³ раствора хлористого калия и доливают водой до метки. Измеряют атомную абсорбцию алюминия в анализируемом растворе параллельно с раствором для построения градуировочного графика и раствором контрольного опыта в пламени ацетилен—закись азота при длине волны 309,3 нм.

(Введен дополнительно, Изм. № 2).

4.3.2. Анализ сплавов, не содержащих олова и кремния

Навеску сплава (см. п. 4.3.1) растворяют при нагревании в 10 см³ азотной кислоты (1:1). Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, добавляют 2 см³ раствора хлористого калия и доливают водой до метки.

4.3.3. Анализ сплавов, содержащих олово

Навеску сплава (см. п. 4.3.1) растворяют в 10 см^3 смеси кислот. Раствор охлаждают, переносят в мерную колбу вместимостью 100 см^3 , добавляют 2 см^3 раствора хлористого калия и доливают водой до метки.

4.3.4. Анализ сплавов, содержащих кремний

Навеску сплава (см. п. 4.3.1) помещают в платиновую чашку и растворяют при нагревании в 10 см³ азотной кислоты (1:1) и 3 см³ фтористоводородной кислоты. После растворения добавляют 10 см³ серной кислоты (1:1) и упаривают до появления белого дыма серной кислоты. Чашку охлаждают и остаток растворяют в 50 см³ воды при нагревании. Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, добавляют 2 см³ раствора хлористого калия и доливают волой до метки.

4.3.5. Построение градуировочных графиков.

При массовой доле алюминия от 0.01 до 0.1 % в четыре из пяти мерных колб вместимостью по 100 см³ помещают 0.3; 1.0; 2.0 и 3.0 см³ стандартного раствора алюминия. Во все колбы добавляют по 5 см³ соляной кислоты (1:1), по 2 см³ раствора хлористого калия и растворы доливают до метки водой.

При массовой доле алюминия свыше 0,1% в девять из десяти мерных колб вместимостью по 100 см³ помещают 0,5;1,0;2,0;3,0;4,0;5,0;6,0;7,0;8,0 см³ стандартного раствора алюминия. Во все колбы добавляют по 5 см³ смеси кислот, раствор меди объемом в

соответствии с ее концентрацией в анализируемом растворе пробы, по $2\ cm^3$ раствора хлористого калия и растворы доливают водой до метки.

- 4.3.6. Измеряют атомную абсорбцию алюминия градуировочных растворов непосредственно перед и после измерения атомной абсорбции алюминия в анализируемом растворе пробы. По получении значения атомной абсорбции растворов после вычитания значения атомной абсорбции контрольного опыта и соответствующим им массовым концентрациям алюминия строят градуировочные графики.
 - 4.3.2—4.3.6. (Измененная редакция, Изм. № 2).
 - 4.4. Обработка результатов
- 4.4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{(c_1 - c_2) \cdot V}{m} \cdot 100,$$

- где c_1 концентрация алюминия в анализируемом растворе пробы, найденная по градуировочному графику, г/см³;
 - c_2 концентрация алюминия в растворе контрольного опыта, найденная по градуировочному графику, г/см³;
 - V объем анализируемого раствора, см³;
 - т масса навески сплава, г.
- 4.4.2. Абсолютные расхождения результатов параллельных определений (d сходимость) не должны превышать допускаемых значений, указанных в табл. 3.
- 4.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D воспроизводимость) не должны превышать значений, указанных в табл. 3.
 - 4.4.2, 4.4.3. (Измененная редакция, Изм. № 2, 3).
- 4.4.4. Контроль точности анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) медно-цинковых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сравнением результатов, полученных другим методом, в соответствии с ГОСТ 25086.

(Измененная редакция, Изм. № 3).

5. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ С АЛЮМИНОНОМ

5.1. Сущность метода

Метод основан на измерении оптической плотности окрашенного комплексного соединения алюминия с алюминоном при рH=4,5—4,6 после отделения алюминия от компонентов сплава раствором гидроокиси натрия.

5.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота уксусная по ГОСТ 61.

Кислота бензойная по ГОСТ 10521.

Аммиак водный по ГОСТ 3760, разбавленный 1:1.

Натрия гидроокись по ГОСТ 4328, раствор 300 г/дм³.

Аммоний уксуснокислый по ГОСТ 3117.

Спирт этиловый ректификованный по ГОСТ 18300.

Фенолфталеин, раствор 10 г/дм³ в этиловом спирте.

Желатин.

Алюминон, раствор 0,25 г/дм³.

Приготовление раствора алюминона:

Раствор 1: 125 г аммония уксуснокислого растворяют в 250 см³ воды, добавляют 20 см³ уксусной кислоты и перемешивают до растворения уксуснокислого аммония.

Раствор 2 состоит из двух растворов:

- а) 0,25 г алюминона растворяют в 15 см³ воды;
- б) 0,5 г бензойной кислоты растворяют в 10 см³ этилового спирта.

Раствор 3: раствор 2(а) вводят в раствор 1, перемешивают, добавляют раствор 2(б) разбавляют водой до 500 см^3 .

Раствор 4: растворяют 2,5 г желатина в 100 см 3 горячей воды, охлаждают и разбавляют водой до 250 см 3 .

Раствор 5: смешивают растворы 3 и 4, доливают водой до 1000 см³ и переносят в темную склянку. Раствор используют через сутки после приготовления. Срок годности раствора один месяц.

Алюминий марки А999 по ГОСТ 11069.

Раствор A: 0, 1 г алюминия растворяют при нагревании в 20 см^3 соляной кислоты. Раствор переносят в мерную колбу вместимостью 1000 см^3 , доливают водой до метки и перемешивают.

1 см³ раствора А содержит 0,0001 г алюминия.

C. 17 FOCT 1652.10-77

Раствор Б: 10 см^3 раствора А помещают в мерную колбу вместимостью 100 см^3 , разбавляют 20 см^3 соляной кислоты, доливают до метки водой и перемешивают.

- 1 см³ раствора Б содержит 0,00001 г алюминия.
- 5.3. Проведение анализа
- 5.3.1. Навеску сплава (см. табл. 4) помещают в стакан вместимостью 250 см³, добавляют 10 см³ азотной кислоты и растворяют при нагревании.

Таблица 4

Массовая доля алюминия, %	Масса навески, г	Аликвотная часть раствора, см ³
От 0,05 до 0,1 включ.	0,5	10
Св. 0,1 » 0,3 »	0,5	5
» 0,3 » 0,6 »	0,2	5
» 0,6 » 1 »	0,2	2

После растворения сплава и удаления оксидов азота кипячением раствор охлаждают, добавляют воды, раствор переносят в мерную колбу вместимостью 200 см³, в которую предварительно поместили 30 см³ при навеске 0,5 г и 20 см³ при навеске 0,2 г горячего раствора гидроокиси натрия. Раствор с осадком в колбе перемешивают, нагревают до кипения, охлаждают, доливают до метки водой, перемешивают и дают осадку отстояться в течение 20-30 мин. Раствор фильтруют через двойной сухой фильтр в сухую колбу, отбрасывая первые порции фильтрата. Аликвотную часть раствора (см. табл. 4) помещают в мерную колбу вместимостью 100 см³, добавляют 10 см³ воды, 2—3 капли фенолфталеина и нейтрализуют раствором соляной кислоты до обесцвечивания раствора. Затем раствор снова нейтрализуют раствором аммиака до розового цвета, добавляют уксусной кислоты по каплям до обесцвечивания раствора и дают избыток 2-3 капли. К подготовленному таким образом раствору добавляют 15 см³ алюминона и ставят на теплое место на 15 мин, не допуская кипения раствора. Раствор охлаждают, разбавляют водой до метки, перемешивают и измеряют оптическую плотность раствора в кювете длиной 30 мм на фотоэлектроколориметре с зеленым светофильтром или на спектрофотометре при длине волны 525 нм, используя раствор контрольного опыта в качестве раствора сравнения.

5.3.2. Построение градуировочного графика

В мерные колбы вместимостью по 100 см³ помещают 0; 0,5; 1,0; 2,0; 3,0 и 4,0 см³ раствора Б алюминия, добавляют по 10 см³ воды, 2—3 капли фенолфталеина и далее поступают, как указано в п. 5.3.1.

Раствором сравнения служит раствор, не содержащий алюминия.

По найденным значениям оптических плотностей растворов и соответствующим им содержаниям алюминия строят градуировочный график.

- 5.4. Обработка результатов
- 5.4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X=\frac{m_1\cdot 100}{m},$$

где m_1 — масса алюминия, найденная по градуировочному графику, г;

m — масса навески, соответствующая аликвотной части раствора, г.

- 5.4.2. Абсолютные расхождения результатов параллельных определений (d сходимость) не должны превышать допускаемых значений, указанных в табл. 3.
- 5.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D воспроизводимость) не должны превышать значений, указанных в табл. 3.
- 5.4.4. Контроль точности анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) медно-цинковых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сравнением результатов, полученных другим методом, в соответствии с ГОСТ 25086.
 - 5.4.2—5.4.4. (Измененная редакция, Изм. № 3).

6. ТИТРИМЕТРИЧЕСКИЙ КОМПЛЕКСОНОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ (ОТ 0,5 ДО 3 %)

6.1. Сущность метода

Метод включает отделение алюминия от других элементов

электролизом на ртутном катоде или на отделении меди электролизом с платиновыми электродами, образовании комплекса алюминия с трилоном Б, титровании его избытка раствором азотнокислого свинца, последующем разложении комплекса алюминия фторидом аммония и титрования трилона Б, выделившегося в количестве, эквивалентном содержанию алюминия, раствором азотнокислого свинца в присутствии ксиленолового оранжевого.

(Введен дополнительно, Изм. № 2).

6.2. Аппаратура, реактивы и растворы

Установка для электролиза с платиновыми электродами по ГОСТ 6563.

Установка для электролиза с ртутным катодом.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Смесь кислот для растворения: смешивают азотную (1:1) и соляную (1:1) кислоты в соотношении 1:1.

Кислота хлорная, разбавленная 1:1 и 1:4.

Аммиак водный по ГОСТ 3760, разбавленный 1:1.

Натрий хлористый по ГОСТ 4233.

Уротропин (гексаметилентетрамин).

Ксиленоловый оранжевый.

Индикаторная смесь: ксиленоловый оранжевый с хлористым натрием в соотношении 1:100.

Аммоний фтористый по ГОСТ 4518, раствор 200 г/дм³. Раствор хранят в полиэтиленовой посуде.

Соль динатриевая этилендиамин-N, N, N', N', -тетрауксусной кислоты 2-водная (трилон Б) по ГОСТ 19652, раствор 0,05 моль/дм³: 18,61 г трилона Б растворяют в воде при нагревании, раствор охлаждают, переносят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

Свинец (II) азотнокислый по ГОСТ 4236, раствор 0,05 моль/дм³: 16,5615 г азотнокислого свинца растворяют в воде, раствор переносят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

(Измененная редакция, Изм. № 2, 3).

- 6.3. Проведение анализа
- 6.3.1. Метод с отделением алюминия от мешающих элементов на ртутном катоде.

Навеску сплава массой 2 г (при массовой доле алюминия до 1 %)

или 1 г (при массовой доле алюминия свыше 1 %) помещают в стакан вместимостью $250~{\rm cm}^3$, добавляют $20~{\rm или}~10~{\rm cm}^3$ смеси кислот для растворения и растворяют при нагревании. После растворения навески добавляют $12~{\rm или}~6~{\rm cm}^3$ (в соответствии с навеской) хлорной кислоты (1:1) и далее поступают, как указано в п. 3.3.1.

После окончания электролиза раствор фильтруют через фильтр средней плотности, фильтр промывают горячей водой, собирая фильтрат в коническую колбу вместимостью $500~{\rm cm}^3$.

Раствор разбавляют водой до объема 150 см³, нейтрализуют раствором аммиака до образования неисчезающего осадка, который растворяют добавлением азотной кислоты и прибавляют в избыток еще две капли. Затем добавляют 30 см³ раствора трилона Б, раствор нагревают до кипения и кипятят 2 мин; после охлаждения добавляют на кончике шпателя индикаторной смеси и уротропин небольшими порциями до получения желтой окраски раствора и установления рН 5,5—6 по универсальной индикаторной бумаге.

Раствор титруют раствором азотнокислого свинца до получения розово-фиолетовой окраски. После этого в раствор добавляют 20 см³ раствора фтористого аммония, кипятят 2 мин, охлаждают, устанавливают значение рН 5,5—6 добавлением азотной кислоты или уротропина и снова титруют раствором азотнокислого свинца до получения розово-фиолетовой окраски раствора.

6.3.2. Метод с отделением меди от алюминия электролизом с платиновыми электродами.

Навеску сплава массой 2 г (при массовой доле алюминия до 1 %) и 1 г (при массовой доле алюминия свыше 1 %) помещают в стакан вместимостью 300 см³ добавляют 30 или 15 см³ азотной кислоты и растворяют при нагревании. После растворения навески раствор кипятят для удаления окислов азота. В случае появления осадка метаоловянной кислоты раствор фильтруют через плотный фильтр с небольшим количеством фильтробумажной массы и фильтр тщательно промывают горячей водой. Раствор разбавляют водой до объема 150 см³ и выделяют медь электролизом по ГОСТ 1652.1. После окончания электролиза раствор переносят в коническую колбу вместимостью 500 см³, нейтрализуют раствором аммиака до образования неисчезающего осадка и далее поступают, как указано в п. 6.3.1.

- 6.4. Обработка результатов
- 6.4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0,001340 \cdot 100}{m}$$
,

где V — объем раствора азотнокислого свинца, израсходованный на второе титрование, см 3 ;

0,001340 — масса алюминия в граммах, соответствующая 1 см³ раствора азотнокислого свинца;

m — масса навески сплава, г.

- 6.3, 6.3.1, 6.3.2, 6.4, 6.4.1. (Введены дополнительно, Изм. № 2).
- 6.4.2. Абсолютные допускаемые расхождения результатов параллельных определений (d сходимость) не должны превышать значений, указанных в табл. 3.
- 6.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D воспроизводимость) не должны превышать значений, указанных в табл. 3.
 - 6.4.2, 6.4.3. (Измененная редакция, Изм. № 2, 3).
- 6.4.4. Контроль точности анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) медно-цинковых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сравнением результатов, полученных другим методом, в соответствии с ГОСТ 25086.

(Измененная редакция, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

- Ю.Ф. Шевакин, М.Б. Таубкин, А.А. Немодрук, Н.В. Егиазарова (руководитель темы), И.А. Воробьева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 27.04.77 № 1062
- 3. B3AMEH FOCT 1652.10-71

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
FOCT 8.315—91 FOCT 61—75 FOCT 199—78 FOCT 435—77 FOCT 859—78 FOCT 1020—77 FOCT 1652.1—77 FOCT 3117—78 FOCT 3118—77 FOCT 3760—79 FOCT 3760—79 FOCT 3773—72 FOCT 4244—77 FOCT 4233—77 FOCT 4233—77 FOCT 4238—77 FOCT 4328—77 FOCT 4461—77 FOCT 4461—77 FOCT 4518—75 FOCT 5475—69 FOCT 5841—74	2.4.4, 3.4.4, 4.4.4, 5.4.4, 6.4.4 2.2, 3.2, 5.2 3.2 2.2 3.2 3.2 3.2 1.1, 3.3.1, 3.3.2, 3.3.2.1, 6.3.2 2.2, 3.2, 5.2 2.2, 3.2, 4.2, 5.2, 6.2 2.2, 3.2, 4.2, 5.2, 6.2 3.2, 4.2 3.2 2.2, 3.2, 4.2 6.2 4.2 3.2, 5.2 2.2, 3.2, 4.2, 5.2, 6.2 4.2 3.2, 5.2 2.2, 3.2, 4.2 6.2 4.2 3.2, 5.2 2.2, 6.2 4.2 3.2, 5.2 2.2, 6.2 4.2 3.2, 5.2 3.2, 5.2 3.2, 6.2 4.2 3.2, 5.2 3.2, 5.2 3.2, 5.2 3.2, 5.2 3.2, 6.2 4.2 3.2

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
FOCT 6563—75 FOCT 6691—77 FOCT 10484—78 FOCT 10521—78 FOCT 10652—73 FOCT 10928—90 FOCT 10929—76 FOCT 11069—74 FOCT 15527—70 FOCT 17711—93 FOCT 18300—87 FOCT 20478—75 FOCT 25086—87 FOCT 27068—86	3.2, 6.2 2.2, 3.2 3.2, 4.2 5.2 2.2, 6.2 4.2 2.2 2.2, 3.2, 4.2, 5.2 Вводная часть Вводная часть 2.2, 3.2, 5.2 3.2 1.1, 2.4.4, 3.4.4, 4.4.4, 5.4.4, 6.4.4

- 5. Постановлением Госстандарта от 28.12.92 № 1525 снято ограничение срока действия
- 6. ПЕРЕИЗДАНИЕ (июль 1997 г.) с Изменениями № 1, 2, 3, 4, утвержденными в октябре 1981 г., ноябре 1987 г., октябре 1989 г., декабре 1992 г. (ИУС 12—81, 2—88, 2—90, 3—93)