

ЦИНК

МЕТОДЫ ОПРЕДЕЛЕНИЯ ОЛОВА

ГОСТ 19251.5-79

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

цинк

Методы определения олова

ГОСТ 19251.5—79

Zinc.

Methods of tin determination

ОКСТУ 1709

Дата введения 01.01.80

Настоящий стандарт устанавливает фотометрический и полярографический методы определения олова при его массовой доле 0,0005 до 0,06 %.

(Измененная редакция, Изм. № 3).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа и требования безопасности - по ГОСТ 19251.0. (Измененная редакция, Изм. № 1).

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на растворении навески в азотной кислоте, осаждении олова в виде метаоловянной кислоты на диоксиде марганца в растворе азотной кислоты 1 моль/дм³ и последующем измерении светопоглощения окрашенного комплекса олова с фенилфлуороном при длине волны 510 нм.

Чувствительность метода — 5 мкг олова в объеме 25 см³.

(Измененная редакция, Изм. № 3).

2.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр любого типа для измерения в видимой области спектра.

Кислота азотная по ГОСТ 4461, разбавленная 1:1, и раствор 1 моль/дм³.

Кислота соляная по ГОСТ 3118, и разбавленная 1:1.

Кислота серная по ГОСТ 4204, разбавленная 1:4, и раствор 2,5 моль/дм³.

Кислота аскорбиновая, раствор 20 г/дм³, свежеприготовленный.

Кислота лимонная по ГОСТ 3652, раствор 100 г/дм³, свежеприготовленный.

Аммиак водный по ГОСТ 3760.

Водорода перекись по ГОСТ 10929.

Калий марганцовокислый по ГОСТ 20490, раствор 6 г/дм³.

Марганец азотнокислый, раствор 10 г/дм³.

Желатин пищевой по ГОСТ 11293, раствор 10 г/дм³.

Ацетон по ГОСТ 2603.

Спирт этиловый по ГОСТ 18300.

Фенилфлуорон (2, 3, 7-триокси, 9-фенил, 6-флуорон), раствор 1 г/дм³; навеску реактива массой 0,1 г растворяют при нагревании в колбе вместимостью 100 см³ в 50 см³ этилового спирта с добавлением 0,5 см³ соляной кислоты. Раствор охлаждают, переводят в мерную колбу вместимостью 100 см³, доводят до метки этиловым спиртом и перемешивают. Раствор хранят в посуде из темного стекла.

Издание официальное

Перепечатка воспрещена © Издательство стандартов, 1979

Издательство стандартов, 1979
 ИПК Издательство стандартов, 1998
 Переиздание с Изменениями

4

Олово марки О1 по ГОСТ 860.

Стандартные растворы олова.

Раствор А: навеску тонко растертого олова массой 0,1000 г помещают в коническую колбу вместимостью $100~{\rm cm^3}$ и растворяют при нагревании в $10~{\rm cm^3}$ серной кислоты, раствор охлаждают, переводят в мерную колбу вместимостью $1~{\rm дm^3}$, доводят до метки серной кислотой $2,5~{\rm моль/дm^3}$ и перемешивают.

1 см³ раствора А содержит 0,1 мг олова.

Раствор Б: в мерную колбу вместимостью 100 см³ отмеривают пипеткой 10 см³ раствора А, доводят до метки серной кислотой 2,5 моль/дм³ и перемешивают.

1 см3 раствора Б содержит 0,01 мг олова.

(Измененная редакция, Изм. № 2, 3).

- 2.3. Проведение анализа
- 2.3.1. Навеску цинка массой 1,0000 г (при массовой доле олова от 0,0005 до 0,005 %), 0,5000 г (при массовой доле олова от 0,005 до 0,01 %) или 0,1000 г (при массовой доле олова от 0,01 до 0,06 %) растворяют в 10 см³ азотной кислоты, разбавленной 1 : 1, нагревают до удаления оксидов азота, разбавляют водой до 100 см³ и приливают 3 см³ раствора азотнокислого марганца. Раствор нейтрализуют аммиаком до выделения бурого гидроксида марганца и добавляют 20 см³ азотной кислоты, разбавленной 1 : 1. Раствор нагревают до кипения, приливают 10 см³ раствора марганцовокислого калия, доливают водой до 150 см³, кипятят 5 мин и оставляют на 50—60 мин в теплом месте.

Осадок отфильтровывают на фильтр средней плотности, промывают его и колбу, в которой проводилось осаждение, 5—6 раз горячим раствором азотной кислоты 1 моль/дм³. Осадок с развернутого фильтра смывают небольшим количеством воды в колбу, где проводилось осаждение, фильтр обрабатывают 10 см³ горячей серной кислоты, разбавленной 1 : 4, с добавлением 6—7 капель пероксида водорода, затем фильтр промывают два раза горячей водой. Полученный раствор переливают в стакан вместимостью 100 см³, выпаривают до паров серной кислоты, охлаждают, споласкивают стенки стакана 3—4 см³ воды и выпаривают досуха. К охлажденному остатку приливают 2,5 см³ раствора серной кислоты; нагревают до растворения, охлаждают, переливают в мерную колбу вместимостью 25 см³, последовательно при перемешивании прибавляют 2 см³ раствора лимонной кислоты, 1 см³ раствора желатина, 3 см³ ацетона, 1 см³ раствора фенилфлуорона, доливают до метки водой, перемешивают, оставляют на 1 ч для развития окраски. Оптическую плотность раствора измеряют в соответствующей кювете при длине волны 510 нм. Раствором сравнения служит раствор контрольного опыта.

Содержание олова устанавливают по градуировочному графику.

(Измененная редакция, Изм. № 2, 3).

2.3.2. Для построения градуировочного графика в семь из восьми стаканов вместимостью 100 см^3 отмеривают 0.5; 1.0; 2.0; 3.0; 4.0; 5.0 и 6.0 см 3 стандартного раствора 6, что соответствует 6; 10

По полученным значениям оптических плотностей растворов и соответствующим им содержаниям олова строят градуировочный график.

- 2.4. Обработка результатов
- 2.4.1. Массовую долю олова (Х), %, вычисляют по формуле

$$X = \frac{m}{10000 \cdot m_1} ,$$

где т— масса олова в растворе, найденная по градуировочному графику, мкг;

 m_1 — масса навески.

(Измененная редакция, Изм. № 3).

2.4.2. Абсолютные значения разностей результатов двух параллельных определений (показатель сходимости) и результатов двух анализов (показатель воспроизводимости) с доверительной вероятностью P=0.95 не должны превышать значений допускаемых расхождений, указанных в таблице.

Массовая доля олова, %	Допускаемое расхождение параллельных определений, %	Допускаемое расхождение результатов анализа, %
От 0,0005 до 0,0010 включ.	0,0002	0,0003
CB. 0,0010 » 0,0030 »	0,0004	0,0006
» 0.0030 » 0.0060 »	0,0006	0,0008
» 0,0060 » 0,0100 »	0,0010	0,0015
» 0,0100 » 0,0300 »	0,0015	0,0022
» 0.0300 » 0.060 »	0,003	0,004

(Измененная редакция, Изм. № 2).

3. ПОЛЯРОГРАФИЧЕСКИЙ МЕТОД

Метод основан на растворении навески в азотной кислоте, отделении свинца в виде двойной соли с сульфатом стронция и полярографировании олова на натриево-хлоридном фоне при потенциале минус 0,5 В по отношению к насыщенному каломельном электроду.

Чувствительность метода определения олова на осциллографическом полярографе $0,05~\text{мг/дм}^3$, на переменно-токовом — $0,002~\text{мг/дм}^3$.

3.1. Аппаратура, реактивы и растворы

Полярограф осциллографический или полярограф переменного тока.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота соляная по ГОСТ 3118.

Кислота серная по ГОСТ 4204 и разбавленная 1:1, 1:5 и 1:20.

Аммиак водный по ГОСТ 3760.

Гидразин дигидрохлорид по ГОСТ 22159.

Железо хлорное по ГОСТ 4147, раствор 20 г/дм3.

Натрий хлористый по ГОСТ 4233, не содержащий свинца.

Аммоний хлористый по ГОСТ 3773.

Промывная аммонийно-аммиачная жидкость, содержащая в 1 дм 3 10 г хлористого аммония и 20 см 3 аммиака.

Стронций азотнокислый по ГОСТ 5429, раствор 100 г/дм3.

Фоновый электролит: в полиэтиленовый сосуд вместимостью 2 дм 3 помещают 200 г хлористого натрия, 40 г дигидрохлорида гидразина, 50 см 3 соляной кислоты, доводят объем до 2 дм 3 водой и перемешивают.

Олова марки О1 по ГОСТ 860.

Стандартный раствор олова: навеску тонко истертого олова массой 0,1000 г помещают в коническую колбу вместимостью 250 см^3 , приливают 10 см^3 серной кислоты, нагревают до полного растворения навески, охлаждают, переводят в мерную колбу вместимостью 1 дм^3 , доводят до метки серной кислотой, разбавленной 1:5, и перемешивают.

1 см³ раствора содержит 0,1 мг олова.

Градуировочные растворы олова: в пять из шести мерных колб вместимостью по 200 см³ отмеривают соответственно 0,5; 1,0; 2,0; 4,0 и 6,0 см³ стандартного раствора олова, доливают до метки фоновым электролитом и перемешивают. Растворы соответственно содержат 0,25; 0,5; 1,0; 2,0 и 3,0 мг/дм³ олова.

Кислота аскорбиновая.

3.2. Проведение анализа

Навеску цинка массой 2,5000 г (массовая доля олова до 0,005 %) и 1,0000 г (массовая доля выше 0,005 %) помещают в коническую колбу вместимостью 250 см^3 , приливают 40 см^3 азотной кислоты, разбавленной 1:1, накрывают часовым стеклом, нагревают до растворения пробы и удаления оксидов азота, ополаскивают стекло водой.

Раствор охлаждают, приливают 15 см³ раствора азотнокислого стронция, разбавляют водой до 100 см³, прибавляют небольшими порциями при перемешивании 10 см³ серной кислоты, разбавленной 1:1, и оставляют в холодильнике с проточной холодной водой на 30 мин. Осадок отфильтровывают на плотный двойной фильтр «синяя лента», собирая фильтрат в коническую колбу вместимостью 250 см³. Осадок в колбе и на фильтре промывают шесть раз холодной серной кислотой, разбавленной 1:20.

К фильтрату приливают 2 см³ раствора хлорного железа, перемешивают, нагревают до 60—70 °С, приливают аммиак до выделения в осадок гидроксидов железа и олова, дают избыток аммиака

10 см³, оставляют на теплой плите на 20—25 мнн, после чего осадок фильтруют через фильтр средней плотности. Колбу и осадок промывают три раза горячей промывной жидкостью, а затем два раза горячей водой.

Осадок с развернутого фильтра смывают 25—30 см³ горячего фонового электролита в коническую колбу вместимостью 50—100 см³, накрывают часовым стеклом, нагревают до кипения и кипятят 3—5 мин, оставляют на теплом месте плиты до обесцвечивания раствора (если в течение 20 мин раствор не обесцветился, то добавляют несколько кристалликов аскорбиновой кислоты), охлаждают, переводят в мерную колбу вместимостью 50 см³, доливают до метки фоновым электролитом и перемешивают.

Часть раствора заливают в полярографическую ячейку и проводят полярографирование олова при соответствующем диапазоне тока и потенциале полуволны минус 0,5 В по отношению к насыщенному каломельному электроду. Одновременно проводят полярографирование раствора контрольного опыта.

Из значений высоты волны анализируемого раствора вычитают значение высоты волны контрольного опыта и вычисляют содержание олова.

- 3.1, 3.2. (Измененная редакция, Изм. № 2, 3).
- 3.3. Обработка результатов
- 3.3.1. Массовую долю олова (X_1) , %, вычисляют по формуле

$$X_1 = \frac{H \cdot V \cdot C}{10000 \cdot h \cdot m} ,$$

где H — высота волны олова в растворе пробы, мм;

V — объем мерной колбы, см³;

C — концентрация олова в градуировочном растворе, мг/дм 3 ;

h — высота волны олова в градуировочном растворе, мм;

m — масса навески пробы, г.

3.3.2. Абсолютные значения результатов двух параллельных определений (показатель сходимости) и результатов двух анализов (показатель воспроизводимости) с доверительной вероятностью P = 0.95 не должны превышать значений допускаемых расхождений, указанных в таблице.

(Измененная редакция, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

- В.И. Лысенко, Л.И. Максай, Р.Д. Коган, В.А. Колесникова, Н.А. Романенко, Р.А. Пестова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 09.08.79 № 3077
- 3. Изменение № 3 принято Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 7 от 26.04.96)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Республика Азербайджан	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Белоруссия	Госстандарт Белоруссии
Республика Казахстан	Госстандарт Республики Казахстан
Республика Киргизстан	Киргизстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Республика Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

4. B3AMEH ΓΟCT 19251.5-73

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 860—75	2.2, 3.1
ΓΟCT 2603—79	2.2
ΓΟCT 3118—77	2.2, 3.1
ГОСТ 3652—69	2.2
ΓΟCT 3760—79	2.2, 3.1
FOCT 3773—72	3.1
ΓOCT 4147—74	3.1
ΓΟCT 4204—77	2.2, 3.1
ΓOCT 4233—77	3.1
ΓOCT 4461—77	2.2, 3.1
ΓOCT 5429—74	3.1
ГОСТ 10929—76	2.2
ГОСТ 11293—89	2.2
ΓΟCT 18300—87	2.2
ГОСТ 19251.0—79	1.1
ГОСТ 20490—75	2.2
ГОСТ 22159—76	3.1

- 6. Ограничение срока действия снято по протоколу 4—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4—94)
- 7. ПЕРЕИЗДАНИЕ (январь 1998 г.) с Изменениями № 1, 2, 3, утвержденными в октябре 1984 г., апреле 1989 г., июне 1996 г. (ИУС 1-85, 7-89, 9-96)

Редактор *М.И. Максимова* Технический редактор *Л.А. Кузнецова* Корректор *Р.А. Ментова* Компьютерная верстка *Л.А. Круговой*

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 12.02.98. Подписано в печать 24.02.98. Усл. печ. л. 0,93. Уч.-изд. л. 0,65. Тираж 148 экз. С186. Зак. 144.